
1

MAGNETIC CORE MEMORIES:

HOW TO CONSTRUCT ONE AND HOW TO SURVIVE

AN OLD IBM DJB 373330 SMS CARD

Del Popolo Salvatore, Didomenico Nicola

Department of Electrical, Electronics and Computer Science (DIEEI)

University of Catania - Prof. Orazio Mirabella

E-mail: popolo@tin.it, nicola.didomenico@gmail.com

Abstract

Writing about magnetic core

memories means coming back more than 50

years ago in the digital era and making an

effort to survive a technology that

represented in a concrete way, the possibility

to store data in a nonvolatile manner. In the

past century, around forties and fifties,

scientists, technicians and engineers all over

the world began to project and realize first

examples of computers for military aims.

Figure 0: IBM 1440 DATA PROCESSING SYSTEM

One of the fundamental elements of a

computer is the possibility to store, either for

the functioning of the system itself, or for

future elaborations and uses. Magnetic,

ferrite core memories made this fundamental

function and were the dominant technology

among fifties and seventies, before being

substituted by transistors first and integrated

circuits after.

I. INTRODUCTION

In this short paper, pointing out

functioning principles of magnetic core

memories, starting from the work of two

American researchers Ben North and Oliver

Nash and only using open source software,

we very briefly summarize how we built our

32 memory array and how succeeded in

controlling it by an STMicroelectronics

microcontroller.

At the end, we demonstrate that, a DJB

373330 SMS Card, owned by one of our

professors and coming from an IBM

mainframe of the past century, is still

functioning.

II. MAGNETIC MEMORIES:

FUNCTIONING PRINCIPLES

Far from being extremely reliable,

magnetic core memory was an attractive

techonology, as based on a very simple idea.

Figure 1: Magnetic Core Ferrite Memory (1940)

mailto:popolo@tin.it
mailto:nicola.didomenico@gmail.com

2

A core is a magnetic ring able to store

just a bit, depending on the direction of its

magnetization, how we can see from the

graph in Figure 2.

Figure 2: Logic States of Magnetic Core Memories

A magnetic core is a ferrite ring that

can be permanently magnetized, either

clockwise or anticlockwise, along its own

axis. Hereby, a core can represent a bit of

digital memory, imposing that the two states

of magnetization are interpreted as 0 or 1,

respectively, how we can see from the graph

in Figure 3.

Figure 3: Direct and Opposite Current

The core need not to be powered to

maintain its own value, realizing in this

manner, a kind of nonvolatile memory as

modern hard discs, but with an incomparably

lower writing/reading speed.

As the technology evolved, core

dimensions' decreased, passing from 2 mm in

'50 to 0.4 mm in first years of '70 of past

century. At the same time, access speed

increased from 200 kHz to 1 MHz and

assembling together hundreds of cores, built

memories with more than 500.000 bits, how

we can see from the graph in Figure 4.

Figure 4: Evolution of memories

The functioning principle of magnetic

memories is based on a characteristic

affecting all ferromagnetic elements. These

can have two permanently states of

magnetization. In the case of the ferrite ring,

the two states of magnetization are identified

by the two directions, clockwise and

anticlockwise, around its circumference.

To set the magnetization core state's

two conductive wires have to pass through it.

A conductive wire generates a magnetic field

and varying the intensity and the direction of

the current that passes through it, it is

possible to induce a change in the

magnetization state of the core, creating what

is defined as hysteresis cycle, illustrated in

Figure 5.

Figure 5: Ferrite Core Magnetization

Hysteresis cycle describes how

changes the core magnetic field, as current

varies in the wire. Points identified by ± REM

represent the remaining magnetic field as no

more current flows across the wire, they are

the two magnetization states' that indicate the

value 0 and one of the memory. Points

identified by ± Is represent the required,

current values to saturate the magnetic state

of the core.

Organizing the cores, forming a two-

dimension array, as in Figure 6, the only core

affected by a change in the state is the one in

which the two wires across each other and the

two 1/2 currents sum themselves. Once the

state changed, although removing the two 1/2

currents, magnetization core state does not

change, storing a possible value. Remaining

cores are not affected, as the 1/2 current that

3

they receive, is not enough to induce a change

in the direction of magnetization.

The orientation of cores versus

currents is fundamental, as the two 1/2

currents must sum to each other to reach the

necessary value to obtain the changing in the

state. In fact, in this situation currents are

defined coincident. To optimize driving lines

in the control unit of the memory, it is also

applied the mechanism of non-coincident

currents, summarized in Figure 6. Finally,

associating state of magnetization and logical

value zero or one, is absolutely arbitrary.

Figure 6: Coincident and Non-Coincident Currents

III. WRITING TO A MAGNETIC

CORE MEMORY

We arbitrary impose that the two

states of magnetization clockwise and

anticlockwise represent values zero and one,

respectively. With reference to Figure 7, let

the two 1/2 currents flow, in the direct

direction, in the two wires that identify the

core we desire to write, until the direction of

magnetization switches to clockwise. When

that happens, the core will contain and

maintain he value zero, even if no more

current flows.

Figure 7: Driving Coincident Currents

To change the value of the core from

0 to 1, it is necessary to reverse the direction

of magnetization. The two 1/2 currents have

to flow in the opposite direction, until the

state of magnetization reverses to

anticlockwise. As explained before, the core

will retain the value even if no more current

flows, Figure 8 summarizes the entire

process. Values of currents and time of

impulse to obtain reversal of magnetization

state are material and thickness dependent

and can be found experimentally.

Figure 8: Writing 0 or 1 to a Magnetic Core Memory

IV. READING FROM A MAGNETIC

CORE MEMORY

Reading from a magnetic core memory is

a bit more difficult and it is necessary to

introduce a new concept: a change in a

magnetic field creates a current.

So, every time we reverse the magnetic field

from clockwise to anticlockwise or vice versa

using the two wires to identify the desired

core, a little current is produced and can be

revealed by a third wire, called the sensing,

spread along the memory. See Figure 9.

Figure 9: Sensing Wire

Keeping in mind the role of the sensing

wire, to read a bit from a magnetic memory,

we proceed as follows:

1. We write a 0. Whether the sensing

reveals no current, no change in the

magnetic field has happened, so, the

core contained and will maintain 0.

4

2. Whether the sensing reveals a current,

a change in the magnetic field has

happened. So, the core contained 0,

but now, that the magnetic field has

reversed, it contains 1. Consequently,

we lose the correct value 0 contained

in the core and substituted it with 1, a

wrong value. Now, it is necessary to

write a 0 on the core, by reversing the

magnetic field again.

This process is defined "destructive

reading": in reading process, each time we

write a value and the sensing reveals a change

in state, we must regenerate the value

contained in the core.

Figure 10: Sensing Wire in a 2*2 Memory Array

This simple schema can be further

complicated, whether, instead of considering

two-dimensional memories, we are interested

in working with memories organized in core

planes, one on top of each other, in order not

to write a bit at a time, but a byte or a word at

a time. In that case a fourth wire, a for each

plane, the "inhibit" is inserted. At reading

time, it is necessary to activate the inhibit

pertaining to the plane containing the core we

do not want to modify. Figures 11 and 12

summarize this concept.

Figure 11: Inhibit Wire

Figure 12: Inhibit Wire in a Bit Array

V. HARDWARE AND SOFTWARE

TO CONTROL OUR MAGNETIC

CORE MEMORY

 Figure 13 summarizes the theoretical

background we exposed so far and the

required hardware to concretely build a

functional magnetic core memory.

Figure 13: Driving in a 4*4 Bit Array

 The circuitry receives X and Y

coordinates of the selected core, together

with the direction of the two currents and

performs either reading or writing task.

 As memories grew the simple,

driving schema shown above began

inappropriate because the required,

increasing number of driving lines. To afford

the problem, as shown in Figure 14, decoders

were inserted. One decoder identifies the

slice of the memory, while the other one

determines the direction in which the currents

have to flow. The theoretically, necessary 64

driving lines have been reduced to 16.

5

Figure 14: Reducing Driving Lines from 64 to 16

 The method of non-coincident

currents is used to further halve the number

of driving lines. Considering a core identified

by its two driving lines; of the four, possible

combinations of the two currents, only two of

them produce a change in the state of

magnetization, those in which the two

currents sum. They are defined coincident

currents. The other two produce no effect, as

being opposite currents, they delete each

other.

 They are defined non-coincident

currents. Figure 6 summarizes these

concepts. Considering now the two cores of

Figure 15. We have still two driving lines, but

one of them, describing two right angles,

goes through one of the two cores in the

opposite direction.

Figure 15: 4 Possible states of currents' Magnetization

Considering again all the four, possible

combinations. We notice that all four states

become valid, two for each core. It is like

whether the array was divided in two slices

and each core of the left side driven by

coincident currents, has an homologous in the

right slice driven by non-coincident currents,

utilizing though the same two driving lines.

 Starting from the project of Ben North

and Oliver Nash, we built our magnetic core

memory. After soldering components, one by

one and many tests on

Arduino, uploading the firmware written by

the two American researchers, we obtained

the shields shown in Figure 16 and 17.

Figure 16: Eagle Drive Shield Layout

Figure 17: Eagle Core Shield Layout

 Then, we went a step further. We

ported the firmware from Arduino Uno to

STMicroelectronics' STM32 and connected

our shields to a Nucleo F411RE. Figures 18

and 19 below, show the assembled hardware:

Nucleo, Core Shield and Drive Shield.

6

Figure 18: Nucleo F411RE, Drive and Core Shield

(View From Above)

Figure 19: Nucleo F411RE, Drive and Core Shield

(Front View)

 The software we wrote is similar to

that written by North and Nash, apart from

tracing, logging and current calibrating

functions that we did not implement. Our

development work was entirely done under

the Linux operating system, using only open

source software. We also wrote some, little

templates to automate compiling, uploading

and debugging the code for Nucleo F411RE.

 In Figure 20 you can see a screenshot

of the interactive menu, in which: t stands for

'testing all bits' array', r for 'reading a specific

bit', R for 'reading the entire array', w for

'writing a specific bit' and W for 'writing the

entire array'.

Single bits are specified by binary addresses

from 0 to 31.

Figure 20: Screenshot of the Interactive Menu of the

Firmware

 We finally substituted the Core Shield

with an IBM DJB 373330 SMS card, shown

in Figure 21, owned by our professor.

Figure 21: DJB 373330 Card

 Unfortunately, although we contacted

people all over the world, we did not find any

documentation about electric schemes and

circuitry of IBM DJB. So, using an

oscilloscope and an electronic microscope,

we drew the CAD representation shown in

Figures 22, 23 and 24.

Figure 22: CAD DJB 373330 Schema 1 of 3

Figure 23: CAD DJB 373330 Schema 2 of 3

7

Figure 24: CAD DJB 373330 Schema 3 of 3

 After a hard testing work, we

succeeded in identifying the pins that

addressed two of the DJB's 1600 cores, that

could be driven by our Drive Shield. Figures

25, 26 and 27 show these connections

together with a connecting board.

Figure 25: Connections for addresses 4 and 14 on the

DJB Card

Figure 26: Connections for addresses 4 and 14 on the

Drive Shield

Figure 27: Connecting Board between DJB and Drive

Shield

 We could write and read two cores,

demonstrating that, at least partially, the DJB

card was still functioning. In Figure 28 you

can see our final, assembled project, whereas,

a screenshot of the firmware uploaded on the

Nucleo is shown in Figure 29. It specifically

refers to the two addresses, 4 and 14,

identified on the DJB.

Figure 28: DJB Card's Entire, Driving System

Figure 29: Screenshot of the Software controlling DJB

Card

VI. CONCLUSION

 Working with Magnetic Core

Memories was an exciting experience. It is

not easy to tackle with this sort of problems,

especially nowadays, that this technology is

no more used and find technical references is

almost impossible. Moreover, owning an

original IBM DJB 373330 SMS Array built

more than 50 years ago is really a pleasure for

future engineers. So, although the difficulties

we encountered to develop our project and

although we started from a very well done

work of North and Nash, we very much thank

8

our Professor Orazio Mirabella and our Tutor

Engineer Antonio Raucea, who gave us the

possibility to concretely experiment with a

piece of technology that represented an

important step in modern computer science.

 We very much desire to thank all

people from many countries who helped us to

end our work and being coherent with our

idea of knowledge sharing, at the addresses

GitHub or Corememory Shield is freely

available all the documentation and software

we produced for our project. A video is

available at Magnetic Core Memory, as well.

REFERENCES

[1] Geoffrey Brown “Discovering the STM32

Microcontroller”, 10 Aprile 2015.

[2] Joseph Yiu “The Definitive Guide to ARM Cortex M3

and Cortex M4 Processors”, Newnes, 2013.

[3] ARM Limited “Cortex-M4 technical reference manual”,

2010.

[4] Trevor Martin “The Insider’s Guide To The STM32

ARM Based Microcontroller”, Hitex, 2009.

[5] STMicroelectronics “Datasheet STM32F303xB

STM32F303xC”, rev. 7, 2013.

[6] STMicroelectronics “STM32F3DISCOVERY peripheral

firmware examples AN4157”, rev. 1, 2012.

[7] STMicroelectronics “Datasheet STM32F405xx

STM32F407xx”, rev. 4, 2015.

[8] STMicroelectronics “STM32F4DISCOVERY peripheral

firmware examples AN3983”, rev. 2, 2011.

[9] STMicroelectronics “Datasheet STM32F401xD

STM32F401xE”, rev. 3, 2015.

[10] STMicroelectronics “STM32 Nucleo boards UM1724”,

rev. 7, 2015.

[11] STMicroelectronics “Description of TM32F30xx/31xx

Standard Peripheral Library UM1581”, rev. 1, 2012.

[12] STMicroelectronics “Description of STM32F4xx HAL

drivers UM1725”, rev. 1, 2014.

[13] Free Software Foundation “Using the GNU Compiler

Collection”, for gcc version 4.8.4 (GNU Tools for ARM

Embedded Processors).

[14] Free Software Foundation “Debugging with GDB”,

Tenth Edition, for GDB version 7.9.

[15] Free Software Foundation “GDB Quick Reference”,

version 5.

[16] Free Software Foundation “GNU MAKE”, Version 4.1

September 2014.

[17] ARM Limited “ARM and Thumb-2 Instruction Set

Quick Reference Card”, 2008.

[18] Free Software Foundation “OpenOCD User’s Guide”,

for release 0.10.0-dev 5 October 2015.

[19] STLINK development team “Using STM32 discovery

kits with open source tools”

[20] Brian W. Kernighan, Dennis M. Ritchie “Il linguaggio

C. Principi di programmazione e manuale di riferimento”,

Pearson 2004.

[21] Texas Instruments “The Integrated Circuits Catalog for

Design Engineers”, First Edition January 1970

[22] DEC Equipment “PDP-8 Maintenance Manual”, 1966

[23] “Byte Magazine - Core Memories”, James R. Jones

Number 11 July 1976

[S1] www.st.com/web/en/catalog/tools/FM116/SC959/SS1532/

PF254044

[S2] http://www.st.com/web/catalog/tools/FM116/SC959/SS1532/
PF252419

[S3] http://www.st.com/web/catalog/tools/FM116/SC959/SS1532/

LN1847/PF260000
[S4] http://www.arm.com/products/processors/cortex-m/

cortex-m4-processor.php

[S5] http://www-micrel.deis.unibo.it/LABARCH/2015/materiale.
html

[S6] http://homepage.cem.itesm.mx/carbajal/MR2010/slides.htm
[S7] http://www.openstm32.org

[S8] https://github.com/gnunicky

[S9] http://jeremyherbert.net/get/stm32f4_getting_started
[S10] https://launchpad.net/gcc-arm-embedded

[S11] https://gcc.gnu.org/

[S12] https://sourceware.org/gdb/download/onlinedocs/
[S13] http://www.gnu.org/software/binutils/

[S14] http://www.gnu.org/software/make/manual/

[S15] http://www.doc.ironwoodlabs.com/gnuarm/

gnuarm-distribution/web/www.gnuarm.com/

[S16] http://beej.us/guide/bggdb/

[S17] www.wolinlabs.com/blog/linux.stm32.discovery.gcc.html
[S18] www.openocd.org

[S19] https://github.com/texane/stlink.git

[S20] http://www.emcu.it/STM32.html
[S21] http://www.carminenoviello.com/category/

elettronica-it-it/

[S22] https://github.com/RIOT-OS/RIOT/wiki/RIOT-Platforms
[S23] http://mdda.net/oss-blog/

[S24] http://web.stanford.edu/class/cs107/resources.html

[S25] http://www.pixelbeat.org
[S26] http://www.corememoryshield.com/report.html

[S27] http://www.cs.ubc.ca/~hilpert/e/coremem/index.html

[S28] http://ed-thelen.org/comp-hist/Byte/76jul.html
[S29] http://nid.dimi.uniud.it/history/history.html

[S30] http://www.retrocomputing.net/eventi/toscana/pi/pisa/

20090518/corsobonfanti/corso.htm
[S31] https://sites.google.com/site/wayneholder/

one-bit-ferrite-core-memory

[S32] http://www.ffellico.com

[S33] http://members.iinet.net.au/~daveb/

[S34] http://tinyurl.com/pdp8core

[S35] http://www.qrp.gr/microwave/
[S36] http://www.aholme.co.uk/

[S37] http://other-1.webs.com/

[S38] http://www.righto.com/2015_03_01_archive.html
[S39] https://www.flickr.com/photos/132738729@N05/sets/

72157653027710200

https://github.com/gnunicky?tab=repositories
http://www.corememoryshield.com/replication.html
https://vimeo.com/144534149

