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Abstract 
 

Writing about magnetic core 

memories means coming back more than 50 

years ago in the digital era and making an 

effort to survive a technology that 

represented in a concrete way, the possibility 

to store data in a nonvolatile manner. In the 

past century, around forties and fifties, 

scientists, technicians and engineers all over 

the world began to project and realize first 

examples of computers for military aims. 

 

 
Figure 0: IBM 1440 DATA PROCESSING SYSTEM 

 

One of the fundamental elements of a 

computer is the possibility to store, either for 

the functioning of the system itself, or for 

future elaborations and uses. Magnetic, 

ferrite core memories made this fundamental 

function and were the dominant technology 

among fifties and seventies, before being 

substituted by transistors first and integrated 

circuits after. 

 

 

 

 

I. INTRODUCTION 

 

In this short paper, pointing out 

functioning principles of magnetic core 

memories, starting from the work of two 

American researchers Ben North and Oliver 

Nash and only using open source software, 

we very briefly summarize how we built our 

32 memory array and how succeeded in 

controlling it by an STMicroelectronics 

microcontroller. 

At the end, we demonstrate that, a DJB 

373330 SMS Card, owned by one of our 

professors and coming from an IBM 

mainframe of the past century, is still 

functioning. 

  

II. MAGNETIC MEMORIES: 

FUNCTIONING PRINCIPLES 
 

Far from being extremely reliable, 

magnetic core memory was an attractive 

techonology, as based on a very simple idea. 

 
Figure 1: Magnetic Core Ferrite Memory (1940)  
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A core is a magnetic ring able to store 

just a bit, depending on the direction of its 

magnetization, how we can see from the 

graph in Figure 2. 

 
Figure 2: Logic States of Magnetic Core Memories  

  

A magnetic core is a ferrite ring that 

can be permanently magnetized, either 

clockwise or anticlockwise, along its own 

axis. Hereby, a core can represent a bit of 

digital memory, imposing that the two states 

of magnetization are interpreted as 0 or 1, 

respectively, how we can see from the graph 

in Figure 3. 

 
Figure 3: Direct and Opposite Current 

 

The core need not to be powered to 

maintain its own value, realizing in this 

manner, a kind of nonvolatile memory as 

modern hard discs, but with an incomparably 

lower writing/reading speed. 

As the technology evolved, core 

dimensions' decreased, passing from 2 mm in 

'50 to 0.4 mm in first years of '70 of past 

century. At the same time, access speed 

increased from 200 kHz to 1 MHz and 

assembling together hundreds of cores, built 

memories with more than 500.000 bits, how 

we can see from the graph in Figure 4. 

 
Figure 4: Evolution of memories 
 

The functioning principle of magnetic 

memories is based on a characteristic 

affecting all ferromagnetic elements. These 

can have two permanently states of 

magnetization. In the case of the ferrite ring, 

the two states of magnetization are identified 

by the two directions,  clockwise and 

anticlockwise, around its circumference. 

To set the magnetization core state's 

two conductive wires have to pass through it. 

A conductive wire generates a magnetic field 

and varying the intensity and the direction of 

the current that passes through it, it is 

possible to induce a change in the 

magnetization state of the core, creating what 

is defined as hysteresis cycle, illustrated in 

Figure 5. 

 
Figure 5: Ferrite Core Magnetization  
 

Hysteresis cycle describes how 

changes the core magnetic field, as current 

varies in the wire. Points identified by ± REM 

represent the remaining magnetic field as no 

more current flows across the wire, they are 

the two magnetization states' that indicate the 

value 0 and one of the memory. Points 

identified by ± Is represent the required, 

current values to saturate the magnetic state 

of the core. 

Organizing the cores, forming a two-

dimension array, as in Figure 6, the only core 

affected by a change in the state is the one in 

which the two wires across each other and the 

two 1/2 currents sum themselves. Once the 

state changed, although removing the two 1/2 

currents, magnetization core state does not 

change, storing a possible value. Remaining 

cores are not affected, as the 1/2 current that 
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they receive, is not enough to induce a change 

in the direction of magnetization. 

The orientation of cores versus 

currents is fundamental, as the two 1/2 

currents must sum to each other to reach the 

necessary value to obtain the changing in the 

state. In fact, in this situation currents are 

defined coincident. To optimize driving lines 

in the control unit of the memory, it is also 

applied the mechanism of non-coincident 

currents, summarized in Figure 6. Finally, 

associating state of magnetization and logical 

value zero or one, is absolutely arbitrary. 

 
Figure 6: Coincident and Non-Coincident Currents 
 

III.  WRITING TO A MAGNETIC 

CORE MEMORY  
 

We arbitrary impose that the two 

states of magnetization clockwise and 

anticlockwise represent values zero and one, 

respectively. With reference to Figure 7, let 

the two 1/2 currents flow, in the direct 

direction, in the two wires that identify the 

core we desire to write, until the direction of 

magnetization switches to clockwise. When 

that happens, the core will contain and 

maintain he value zero, even if no more 

current flows. 

 
Figure 7: Driving Coincident Currents 

 

To change the value of the core from 

0 to 1, it is necessary to reverse the direction 

of magnetization. The two 1/2 currents have 

to flow in the opposite direction, until the 

state of magnetization reverses to 

anticlockwise. As explained before, the core 

will retain the value even if no more current 

flows, Figure 8 summarizes the entire 

process. Values of currents and time of 

impulse to obtain reversal of magnetization 

state are material and thickness dependent 

and can be found experimentally. 

 

 
Figure 8: Writing 0 or 1 to a Magnetic Core Memory  

 

IV. READING FROM A MAGNETIC 

CORE MEMORY 
 

Reading from a magnetic core memory is 

a bit more difficult and it is necessary to 

introduce a new concept: a change in a 

magnetic field creates a current. 

So, every time we reverse the magnetic field 

from clockwise to anticlockwise or vice versa 

using the two wires to identify the desired 

core, a little current is produced and can be 

revealed by a third wire, called the sensing, 

spread along the memory. See Figure 9.  

 
Figure 9: Sensing Wire 
 

Keeping in mind the role of the sensing 

wire, to read a bit from a magnetic memory, 

we proceed as follows: 

1. We write a 0. Whether the sensing 

reveals no current, no change in the 

magnetic field has happened, so, the 

core contained and will maintain 0. 
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2. Whether the sensing reveals a current, 

a change in the magnetic field has 

happened. So, the core contained 0, 

but now, that the magnetic field has 

reversed, it contains 1. Consequently, 

we lose the correct value 0 contained 

in the core and substituted it with 1, a 

wrong value. Now, it is necessary to 

write a 0 on the core, by reversing the 

magnetic field again.  

This process is defined "destructive 

reading": in reading process, each time we 

write a value and the sensing reveals a change 

in state, we must regenerate the value 

contained in the core. 

 
Figure 10: Sensing Wire in a 2*2 Memory Array 
 

This simple schema can be further 

complicated, whether, instead of considering 

two-dimensional memories, we are interested 

in working with memories organized in core 

planes, one on top of each other, in order not 

to write a bit at a time, but a byte or a word at 

a time. In that case a fourth wire, a for each 

plane, the "inhibit" is inserted. At reading 

time, it is necessary to activate the inhibit 

pertaining to the plane containing the core we 

do not want to modify. Figures 11 and 12 

summarize this concept. 

 
Figure 11: Inhibit Wire 

 

 
Figure 12: Inhibit Wire in a Bit Array 

V. HARDWARE AND SOFTWARE 

TO CONTROL OUR MAGNETIC 

CORE MEMORY 
  

 Figure 13 summarizes the theoretical 

background we exposed so far and the 

required hardware to concretely build a 

functional magnetic core memory. 

 
Figure 13: Driving in a 4*4 Bit Array 

 

 The circuitry receives X and Y 

coordinates of the selected core, together 

with the direction of the two currents and 

performs either reading or writing task. 

 As memories grew the simple, 

driving schema shown above began 

inappropriate because the required, 

increasing number of driving lines. To afford 

the problem, as shown in Figure 14, decoders 

were inserted. One decoder identifies the 

slice of the memory, while the other one 

determines the direction in which the currents 

have to flow. The theoretically, necessary 64 

driving lines have been reduced to 16. 
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Figure 14: Reducing Driving Lines from 64 to 16 

 

 The method of non-coincident 

currents is used to further halve the number 

of driving lines. Considering a core identified 

by its two driving lines; of the four, possible 

combinations of the two currents, only two of 

them produce a change in the state of 

magnetization, those in which the two 

currents sum. They are defined coincident 

currents. The other two produce no effect, as 

being opposite currents, they delete each 

other.  

 They are defined non-coincident 

currents. Figure 6 summarizes these 

concepts. Considering now the two cores of 

Figure 15. We have still two driving lines, but 

one of them, describing two right angles, 

goes through one of the two cores in the 

opposite direction. 

 
Figure 15: 4 Possible states of currents' Magnetization 

 

Considering again all the four, possible 

combinations. We notice that all four states 

become valid, two for each core. It is like 

whether the array was divided in two slices 

and each core of the left side driven by 

coincident currents, has an homologous in the 

right slice driven by non-coincident currents, 

utilizing though the same two driving lines. 

 Starting from the project of Ben North 

and Oliver Nash, we built our magnetic core 

memory. After soldering components, one by 

one and many tests on 

Arduino, uploading the firmware written by 

the two American researchers, we obtained 

the shields shown in Figure 16 and 17. 

 
Figure 16: Eagle Drive Shield Layout 

 
Figure 17: Eagle Core Shield Layout 

 

 Then, we went a step further. We 

ported the firmware from Arduino Uno to 

STMicroelectronics' STM32 and connected 

our shields to a Nucleo F411RE. Figures 18 

and 19 below, show the assembled hardware: 

Nucleo, Core Shield and Drive Shield. 
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Figure 18: Nucleo F411RE, Drive and Core Shield 

(View From Above) 

 
Figure 19: Nucleo F411RE, Drive and Core Shield 

(Front View) 

 The software we wrote is similar to 

that written by North and Nash, apart from 

tracing, logging and current calibrating 

functions that we did not implement. Our 

development work was entirely done under 

the Linux operating system, using only open 

source software. We also wrote some, little 

templates to automate compiling, uploading 

and debugging the code for Nucleo F411RE. 

 In Figure 20 you can see a screenshot 

of the interactive menu, in which: t stands for 

'testing all bits' array', r for 'reading a specific 

bit', R for 'reading the entire array', w for 

'writing a specific bit' and W for 'writing the 

entire array'. 

Single bits are specified by binary addresses 

from 0 to 31. 

 

Figure 20: Screenshot of the Interactive Menu of the 

Firmware 
 

 We finally substituted the Core Shield 

with an IBM DJB 373330 SMS card, shown 

in Figure 21, owned by our professor. 

 
Figure 21: DJB 373330 Card 
 

 Unfortunately, although we contacted 

people all over the world, we did not find any 

documentation about electric schemes and 

circuitry of IBM DJB. So, using an 

oscilloscope and an electronic microscope, 

we drew the CAD representation shown in 

Figures 22, 23 and 24. 

 
Figure 22: CAD DJB 373330 Schema 1 of  3 

 

 
Figure 23: CAD DJB 373330 Schema 2 of  3 
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Figure 24: CAD DJB 373330 Schema 3 of  3 

 

 After a hard testing work, we 

succeeded in identifying the pins that 

addressed two of the DJB's 1600 cores, that 

could be driven by our Drive Shield. Figures 

25, 26 and 27 show these connections 

together with a connecting board. 

 
Figure 25: Connections for addresses 4 and 14 on the 

DJB Card 

 

 
Figure 26: Connections for addresses 4 and 14 on the 

Drive Shield 
 

 

Figure 27: Connecting Board between DJB and Drive 

Shield 
 

 We could write and read two cores, 

demonstrating that, at least partially, the DJB 

card was still functioning. In Figure 28 you 

can see our final, assembled project, whereas, 

a screenshot of the firmware uploaded on the 

Nucleo is shown in Figure 29. It specifically 

refers to the two addresses, 4 and 14, 

identified on the DJB. 

 
Figure 28: DJB Card's Entire, Driving System 

 

 
Figure 29: Screenshot of the Software controlling DJB 

Card 

 

VI. CONCLUSION 
  

 Working with Magnetic Core 

Memories was an exciting experience. It is 

not easy to tackle with this sort of problems, 

especially nowadays, that this technology is 

no more used and find technical references is 

almost impossible. Moreover, owning an 

original IBM DJB 373330 SMS Array built 

more than 50 years ago is really a pleasure for 

future engineers. So, although the difficulties 

we encountered to develop our project and 

although we started from a very well done 

work of North and Nash, we very much thank 
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our Professor Orazio Mirabella and our Tutor 

Engineer Antonio Raucea, who gave us the 

possibility to concretely experiment with a 

piece of technology that represented an 

important step in modern computer science. 

 We very much desire to thank all 

people from many countries who helped us to 

end our work and being coherent with our 

idea of knowledge sharing, at the addresses 

GitHub or Corememory Shield is freely 

available all the documentation and software 

we produced for our project. A video is 

available at Magnetic Core Memory, as well. 
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